
PHYSICAL REVIEW E FEBRUARY 1999VOLUME 59, NUMBER 2
Compact support probability distributions in random matrix theory
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We consider a generalization of the fixed and bounded trace ensembles introduced by Bronk and Rosenz-
weig up to an arbitrary polynomial potential. In the large-n limit we prove that the two are equivalent and that
their eigenvalue distribution coincides with that of the canonical ensemble with measure exp@-nTr V(M )#. The
mapping of the corresponding phase boundaries is illuminated in an explicit example. In the case of a Gaussian
potential we are able to derive exact expressions for the one- and two-point correlator for finiten, having finite
support.@S1063-651X~99!05802-X#

PACS number~s!: 02.50.Cw, 05.40.2a
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I. INTRODUCTION

Random matrix ensembles have been extensively stu
since the early works of Wigner and Dyson, as effect
mathematical reference models for the description of sta
tical properties in the spectra of complex physical syste
ranging from such diverse areas as nuclear resonance
quantum billiards to mesoscopic transport or quenched Q
Even a cursory glance at some recent review monogra
@1–4#, shows the impressive development of analytical to
and the variety of applications to physical systems reache
the past decade and a combined bibliography, although
incomplete, of over a thousand papers.

Historically the matrices of the ensemble belong to one
three classes, they are real symmetric or complex Hermi
or with quaternionic entries but in recent years other
sembles, such as complex non-Hermitian or real nonsymm
ric matrices have been studied. To keep our paper as sim
as possible, we restrict ourselves to complex-Hermitian m
trices, although the results of this paper apply also to
other two traditional ensembles with minimal changes.

A random matrix ensemble is defined by the joint pro
ability density for the independent entries of the matrix. In
large number of papers, particularly those related to tw
dimensional quantum gravity, the probability density has
form

P~M ![
1

Z e2b Tr V~M !, ~1.1!

whereV(x) is a polynomial. Since this probability density
invariant under the similarity transformationM5ULU†

which diagonalizes the matrixM, most problems may be
formulated in terms of the joint probability density for th
eigenvalues

P~l1 , . . . ,ln![
1

z
Dn

2~l! e2b(
1

n

V~l i ! ~1.2!

and may be called eigenvalue models. We shall call the p
ability density ~1.1! or ~1.2! the canonical density. In the
PRE 591063-651X/99/59~2!/1489~9!/$15.00
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analysis of the large-n limit of observables, evaluated with
the canonical probability density, the method of orthogo
polynomials@5# proved to be most effective. In the prese
paper we study matrix ensembles defined by the probab
density

Pd~M ![
1

Zd
dS A22

1

n
Tr V~M ! D ~1.3!

and the closely related probability density where the s
function replaces the Diracd function. We follow the classic
book by Mehta@6# and call collectively these models(gen-
eralized) restricted trace ensembles. They are a generaliza
tion of ensembles studied long ago by Rosenzweig
Bronk @7# where only the caseV(x)5x2 was considered.
While the ensemble is still invariant under the unitary tran
formation that diagonalizes the random matrix, the meth
of orthogonal polynomials cannot be directly applied b
cause the constraint of thed function introduces an addi
tional interaction among the eigenvalues. Restricted trace
sembles seem to us interesting for several features:
interaction among eigenvalues is introduced through a c
straint very similar to the nonlinears model in quantum field
theory, the spectral density has compact support both
finite n and in the large-n limit ~unlike the usual Gaussia
random model!, and they relate to canonical probability de
sities~1.1! or ~1.2! just in the same way as the microcanon
cal ensemble is related to the canonical ensemble in sta
cal mechanics.

The effectiveness of random matrix theory is relat
mainly to universal properties of some observables, tha
independence, in the large-n limit, of some observables from
the chosen probability density. The ensemble averaged
sity of eigenvaluesr(l)51/n Tr^d(l2M )&, in canonical
eigenvalue models~1.1! or ~1.2! is known to depend from
the chosen functionV(x), yet a number of critical exponent
deduced from the spectral density were shown to be indep
dent from the details of the chosen functionV(x). Much
earlier the density-density connected correlatorrc(l,m),
1489 ©1999 The American Physical Society
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rc~l,m![ K 1

n
Tr d~l2M !

1

n
Tr d~m2M !L

2 K 1

n
Tr d~l2M !L K 1

n
Tr d~m2M !L

5r~l,m!2r~l! r~m!, ~1.4!

was shown to have local universality properties, that is,
ul2mu;O(1/n) and far from the extrema of the support
the spectral density, in the large-n limit. This was the basis
for the use of random matrix theory for statistical fluctu
tions of observables around their mean values. Other fo
of universality were derived more recently by several a
thors, including a form of wide correlator which depends
the canonical potentialV(x) only through the extrema of th
spectral density. The proof by Beenakker and a list of ot
authors is recalled in Sec. I D of Ref.@3#.

In Sec. II we exploit a scale transformation, already us
by Rosenzweig in a more limited extent, to relate obse
ables in restricted trace ensembles whereV(x)5x2 with the
corresponding ones in the random Gaussian model. This
lows explicit evaluations for the spectral density and the t
point correlators for finiten.

We then consider a generalization of the restricted tr
ensembles to a genericV(x) in Sec. III. There a very genera
proof of the equivalence, in the large-n limit, of the general-
ized restricted trace ensembles with the corresponding
nonical ones is presented. This proof is a wide generaliza
of the old result of the equivalence, in the large-n limit, of
the restricted trace ensembles with the random Gaus
model.

Unlike the original restricted trace ensembles, the gen
alized ensembles have a nontrivial phase diagram in
large-n limit. Despite the equivalence shown in Sec. III wi
canonical probability distributions, the mapping of para
eters in equivalent models is one-to-one only in the per
bative phase. We show this in detail in one example of ph
diagram in Sec. IV.

Let us stress that the present paper is concerned with
vation of exact analytic results for the probability distrib
tions we consider. Applications of physical interest are
ferred to a future paper. While this paper was being writt
we were informed of a poster presented by Nagao at S
Phys 20, discussing generalized fixed trace ensembles of
dom matrices. There the old model by Rosenzweig is ge
alized by considering a joint probability density o
eigenvalues of the form

P~l1 , . . . ,ln![
1

z
Dn

b~l! )
1

n

l i
a dS A22(

1

n

l i
2D .

~1.5!

This study has very little overlap with the present paper.

II. RESTRICTED TRACE ENSEMBLES AT FINITE n

Let us begin by describing the most relevant features
two closely related ensembles: the fixed trace and
bounded trace ensembles. LetM be an3n Hermitian matrix.
The fixed trace ensemblecorresponding to the Gaussia
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model is defined by the probability distribution

Pd~M ![
1

Zd
dS A22

1

n
Tr M2D ,

Zd[E DM dS A22
1

n
Tr M2D5S 1

2D ~n22n!/2

vn2
~AAn!n2

2A2
,

~2.1!

where DM[) i 51, . . . ,ndMii ) i . jRedMi j Im dMi j , vn2

5(2 pn2/2)/@G(n2/2)# is the surface area of the unit sphe
in n2 dimensions, and the factor 1/n has been introduced in
view of the large-n limit.

Expectation values ofO(n2) invariant amplitudes are
trivially evaluated for everyn as, for instance,

^~Tr M2!k &d [E DM ~Tr M2!k Pd~M !5~nA2!k.

~2.2!

However, we are interested in more general expectation
ues, which are functions of the distribution of eigenvalu
They may be evaluated from the joint probability distributio
Pd(l1 , . . . ,ln), which is obtained from Eq.~2.1! after inte-
gration of the unitary degrees of freedom

Pd~l1 , . . . ,ln!5
1

zd
Dn

2~l! dS A22
1

n(i 51

n

l i
2D ,

Dn~l! [ )
1<r ,s<n

~l r2ls!5det@l i
j 21#,

~2.3!

zd[E
2`

`

)
i 51

n

dl i Dn
2~l! dS A22

1

n(i 51

n

l i
2D

5S A2

2 D ~n2/2!21 nn2/2

2

~2p!n/2

GS n2

2 D )
j 51

n

j !

Closely related to this matrix ensemble is thebounded trace
ensemble. It is defined by the probability distribution

Pu~M ![
1

Zu
uS A22

1

n
Tr M2D ,

Zu[E DM uS A22
1

n
Tr M2D5S 1

2D ~n22n!/2

, ~2.4!

vn2
~AAn!n2

n2
.

In the same way of Eq.~2.2!, one easily finds

^~Tr M2!k &u 5S n21k

n212k
D A2k, ~2.5!

which exhibits the usual factorization ofO(n2) invariant am-
plitudes only in the large-n limit. In order to evaluate expec
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tations that only depend on the distribution probability of t
eigenvalues, one may use the joint probability distributi
analogous to Eq.~2.3!:

Pu~l1 , . . . ,ln!5
1

zu
Dn

2~l! uS A22
1

n(1

n

l i
2D ,

zu[E
2`

`

)
i 51

n

dl i Dn
2~l! uS A22

1

n(1

n

l i
2D ~2.6!

5S A2

2 D n2/2

nn2/2
~2p!n/2

GS n2

2
11D )

j 51

n

j !

Of course the two ensembles are related by a simple dif
ential equation. Since

]

]A2
Pu~M !5

Zd

Zu
@Pd~M !2Pu~M !#

5
n2

2A2
@Pd~M !2Pu~M !#,

one easily obtains a simple relation between the two exp
tations for any generic observable:

^O~M !&d 5S 11
2A2

n2

]

]A2D ^O~M !&u . ~2.7!

A remarkable feature of both the fixed trace ensemble
the bounded trace ensemble is that the density of statesr(l)
has compact support for anyn, finite or infinite. We here
obtain the exact expression of the eigenvalue distribution
the fixed trace ensemble for any value ofn, based on the
known results for the Gaussian model.

Let us first recall a few useful formulas of the Gauss
model. The partition function and the eigenvalue density

zG5E dl1•••dln Dn
2 e2a~l1

2
1•••1ln

2
!, ~2.8!

rG~l!5e2al2 1

zG
E dl1•••dln21Dn21

2

3e2a~l1
2
1•••1ln21

2
!)
i 51

n21

~l2l i !
2, ~2.9!

where the positive parametera is arbitrary, and for shortnes
we setDn

2[D2(l1 , . . . ,ln). Both integrals may be com
puted for finiten by means of orthogonal polynomials, whic
in this case are the Hermite ones:

zG5
~2p!n/2

~2a!n2/2)k51

n

k!

~2.10!

rG~l!5Aa

p
e2al2 1

n (
k50

n21 Hk
2~lAa!

2kk!
.

,

r-

c-

d

of

e

Instead of evaluating the sum by means of the Christof
Darboux formula, it is useful for our discussion to use t
expansion

@Hk~x!#25(
l 50

k
~k! !22k2 l

~ l ! !2~k2 l !!
H2l~x! ~2.11!

to obtain, with some simple algebra:

rG~l!5Aa

p
e2al2 1

n(
k50

n21 S n

k11D H2k~lAa!

2kk!
. ~2.12!

To study the integrals for the fixed trace ensemble, it is c
venient to adopt the following notation. Let us denote
v(n,R) the surface of the sphere inRn of radiusR, and by
dan the element of surface integration. The partition functi
and the eigenvalue density, forulu<R, are

zd5E
2`

`

)
i 51

n

dl i Dn
2~l! dS A22

1

n(i 51

n

l i
2D

5
n

2REv~n,R!
dan Dn

2, R2[nA2, ~2.13!

rd~l!5
1

zd
E )

i 51

n

dl i Dn
2 d~l2ln! dS A22

1

n(i 51

n

l i
2D

5
n

2zdAR22l2Ev~n21,AR22l2!

3dan21Dn21
2 )

i 51

n21

~l2l i !
2. ~2.14!

After a change of scale, to restrict both integrals to the s
face of unit radius

zd5
n

2
Rn222E

v~n,1!
dan Dn

2, ~2.15!

rd~l!5
n

2zd
~R22l2!1/2 ~n223!E

v~n21,1!
dan21Dn21

2

3 )
i 51

n21 S l

AR22l2
2l i D 2

. ~2.16!

Let us first evaluate the partition function. We sta
from the integral expression~2.8! for zG , and change
to spherical variables with radial componentr. The
volume element is r n21dr dan , and D2(l1 , . . . ,ln)
5r n(n21)D2(l1 /r , . . . ,ln /r ). Therefore we have

zG5E
0

`

dr r n221e2ar2E
v~n,1!

danDn
2 . ~2.17!

The surface integral is the same appearing in Eq.~2.15!, and
we conclude:
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zd5zG

n~RAa!n2

R2 GS n2

2 D . ~2.18!

The same procedure is used in the evaluation of the eig
value density. In radial coordinates, the integral for t
Gaussian density is

rG~l!5e2al2 1

zG
E

0

`

dr r n222e2ar2

3E
v~n21,1!

dan21Dn21
2 )

i 51

n21 S l

r
2l i D 2

.

~2.19!

The surface contribution is much like the one in the expr
sion ~2.16! for rd(l). To implement this similarity, we in-
troduce the expansion

E
v~n21,1!

dan21Dn21
2 )

i 51

n21

~x2l i !
25 (

k50

2n22

ckx
k.

~2.20!

Since rG(l) is even in l, only the even coefficients ar
different from zero. The expressions for the densities in
two ensembles are

rG~l!5e2al2 1

zG
a2~1/2!~n221!

3
1

2(
k50

n21

c2k~lAa!2kGS n221

2
2kD , ~2.21!

rd~l!5
n

2zd
~R22l2! [ ~n21!2]/221

3 (
k50

n21

c2kl
2k~R22l2!n212k, R2[nA2. ~2.22!

The coefficientsc2k are obtained by comparing the polyn
mial expression in Eq.~2.21! and the exactly known resu
~2.12!:

c2k5212~n2/2!
~2p!n/2~24!k

Ap~2k!!

)
j 51

n

j !

GS n221

2
2kD

1

n

3 (
l 5k

n21

~21! l
~2l !!

2l l ! ~ l 2k!! S n

l 11D . ~2.23!

More explicitly, the spectral densities for the lowest-ord
random matrices are
n-

-

e

r

rd~l!5
1

pA2A22l2
for n52,

rd~l!5
35A3

576A7S A22
l2

3 D @3A422l2A213l4#

for n53,

rd~l!5
32

429pA14S A22
1

4
l2D 7/2

@12A6130l2A4

253l4A2138l6# for n54,

rd~l!5
2 028 117A5

54 ~2A!23 S A22
l2

5 D 7

@375A82300l2A6

14490l4A425996l6A212711l8# for n55.

~2.24!

To evaluate the spectral density for the bounded trace
semble, for finiten, one may proceed in a similar way as
the Gaussian case, to obtain

ru~l!5
1

zu
E

0

AR22l2

dr r n222

3E
v~n21,1!

dan21Dn21
2 )

i 51

n21 S l

r
2l i D 2

~2.25!

and therefore

ru~l!5
1

zu
~R22l2!~n221!/2

3 (
k50

n21
c2k

n222k21
S l2

R22l2D k

, R2[nA2.

~2.26!

The same result may be obtained by inverting the differen
equation~2.7!. In a similar way, it is possible to write the
explicit expressions of the two-point correlator of restrict
trace ensembles in terms of the known two-point correla
of the Gaussian ensemble at finiten. We obtain

rG~l,m!5
1

2zG
e2a~l21m2!a2~1/2!~n224!

3 (
r ,s50

2n22

cr ,s~lAa!r~mAa!sGS n22r 2s

2
21D ,

~2.27!
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rd~l,m!5
1

zd
~R22l22m2!~1/2!~n223!

3 (
r ,s50

2n22

cr ,sl
rms~R22l22m2!2[ ~r 1s!/2],

~2.28!

where the coefficientscr ,s5cs,r are defined by

~x2y!2E
v~n22,1!

dan22Dn22
2 )

k51

n22

~x2l i !
2~y2l i !

2

5 (
r ,s50

2n22

cr ,sx
rys. ~2.29!

III. GENERALIZED RESTRICTED TRACE ENSEMBLES
AT LARGE n

With some generality, for an arbitrary polynomial pote
tial V(M )5(gkM

k, whereM is a Hermitiann3n matrix,
we define the generalizedfixed trace ensembleand the gen-
eralizedbounded trace ensembleby the two probability den-
sities:

Pd~M ![
1

Zd
dS A22

1

n
Tr V~M ! D , ~3.1!

Pu~M ![
1

Zu
uS A22

1

n
Tr V~M ! D , ~3.2!

whereZd andZu are the normalization factors, and we us
the same notation of the previous section, where they co
spond to the simplest caseV(x)5x2.

Both ensembles are invariant under the action of the u
tary group. Therefore, when changing matrix the parame
zation from n2 independent matrix elements to then real
eigenvalues and the parameters for eigenvectors, the m
sures factorize into a part given by the Haar measure
SU(n) and a part involving only the eigenvalues. The lat
provides the joint probability density of the eigenvalues,
starting point for all spectral statistics. Lettingf stand for
thed or theu function, the expression for the joint probab
ity density is

Pf~l1 , . . . ,ln!5
1

zf
fS A22

1

n(i 51

n

V~l i !DD2~l1 , . . . ,ln!,

~3.3!

zf5E )
i 51

n

dl i fS A22
1

n(i 51

n

V~l i !D D2~l1 , . . . ,ln!.

~3.4!

The two ensembles are obviously related by the differen
equation analogous to Eq.~2.7!:

Pd~l1 , . . . ,ln!5S 11
zu

zd

]

]A2DPu~l1 , . . . ,ln!,

~3.5!
e-

i-
i-

ea-
of
r
e

l

which will be used to study the properties of the bound
trace ensemble from a knowledge of the fixed trace o
Indeed, in this general setting, the latter is easier to evalu
in the large-n limit.

Besides the two restricted trace ensembles, it is usefu
consider also the canonical ensemble, with the same po
tial V(M ) and a parameterK:

P~l1 , . . . ,ln!5
1

z
e2Kn(

i 51

n

V~l i !D2~l1 , . . . ,ln!,

~3.6!

z5E )
i 51

n

dl i e2Kn(
i 51

n

V~l i !D2~l1 , . . . ,ln!. ~3.7!

As is well known, the partition function for the eigenvalue
may be given the interpretation as the partition function o
one-dimensional gas ofn particles with pairwise repulsive
interaction and, in the canonical case, subject to the exte
potentialV(l). In the restricted trace ensembles the poten
enters as a constraint depending on the positions ofall par-
ticles. This main difference makes the analysis of these m
els difficult and interesting, especially for the issue of t
universality properties of correlators.

While for canonical models the powerful technique of o
thogonal polynomials applies, giving at least formally a
for any value ofn the explicit expressions of all correlator
for the restricted trace ensembles we must content ourse
with the analysis of the eigenvalue density in the largen
limit. This is easily done for the fixed trace ensemble, thed
constraint of which can be taken into account in the ene
functional through a Lagrange multiplier. In the largen
limit, the eigenvalue configuration is described by a norm
ized densityr(l), and the energy functional associated to
is

H@r#52E dl dm r~l!r~m!lnul2mu

1aS A22E dl r~l!V~l! D1bS 12E dl r~l! D .

~3.8!

The saddle point configuration is the one that minimizes
energy, and is precisely the sought limit densityrd . It solves
the following equation, valid for anyl inside the unknown
supportL of rd :

05
dH@r#

dr~l!
522E dm rd~m!lnul2mu2aV~l!2b.

~3.9!

A derivative in l eliminates the parameterb associated to
the constraint of normalization, and yields a Cauchy-Hilb
integral equation for the limit density:

2E
L
dm

rd~m!

l2m
5

a

2
V8~l!, lPL. ~3.10!

For anya, which is still unknown, and after having fixed
geometry for the supportL ~an interval, for example! Eq.
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~3.10! is solved using analyticity arguments, and the extre
of L are fixed by the normalization condition@15#. Inside the
family of pairsL(a) andrd(l;a) parameterized bya, the
pair that describes the large-n limit of the fixed trace en-
semble is determined by the valuea5ā, solution of the
equation

A25E
L~ ā !

dl rd~l;ā !V~l!. ~3.11!

The numberb̄ of the extremal solution may be evaluate
from eq.~3.9! by choosing a convenient value ofl in L.

The densityrd so far obtained, coincides with the lim
density of the canonical model~3.7!, with parameterK5ā.
In the particularly simple caseV(M )5M2, one obtains also
for the restricted trace ensemble a limit density described
Wigner’s semicircle law, with radius 2A. The energy func-
tional ~3.8! evaluated at the extremum, is

H@rd#52E dl dm rd~l!rd~m!lnul2mu, ~3.12!

where the double integral may be simplified by using E
~3.9! and the constraints

E dl dm rd~l!rd~m!lnul2mu52 1
2 āA22 1

2 b̄.

~3.13!

We then obtain the large-n expression of the partition func
tion

zd→e2 1/2 n2~ āA21b̄ ![e2n2f ~A2!. ~3.14!

Sincezd5(]/]A2)zu , Eq. ~3.14! implies

zu

zd
5
Zu

Zd
→2

1

n2
]

]A2
f ~A2!

. ~3.15!

A simple check is provided by the monomial potentia
V(x)5x2k. In this simple case, the normalization consta
zu andzd may be evaluated by a rescaling of the eigenval
with the resultzu /zd52kA2/n2.

The result~3.15! is most useful and it implies the gene
alization of Eq.~2.7!,

^O~M !&d 5S 11cn

]

]A2D ^O~M !&u ,

~3.16!

cn→2
1

n2
]

]A2
f ~A2!

.

By using this equation both for the spectral density and
the density-density correlator~1.4!, we obtain an exact equa
tion, for anyn:
a

y

.

s
s

r

rd,c~l,m!5rd~l,m!2rd~l!rd~m!

5S 11cn

]

]A2D ru~l,m!

2S 11cn

]

]A2D ru~l!S 11cn

]

]A2D ru~m!

5ru,c~l,m!1cn

]

]A2
ru,c~l,m!

2~cn!2S ]

]A2
ru~l!D S ]

]A2
ru~m!D . ~3.17!

We have not proven that the generalized restricted trace
trix ensembles have a topological expansion in the largn
limit and the factorization of invariant operators, analogo
to matrix ensembles defined by canonical probability den
ties. The analysis of the next section, where the fixed tr
constraint is reached as a limit of the probability dens
Pl(M ) indicates that such properties are very likely. The
fore it seems reasonable to assume, as for the canonical p
ability densities,

rf~l,m!→rf~l!rf~m!1
1

n2
r̄f~l,m!1OS 1

n3D ,

~3.18!

wheref stands for thed or theu functions. This assumption
~3.18!, as well as more general assumptions, together w
Eqs.~3.17! and ~3.16!, imply in the large-n limit rd,c(l,m)
5ru,c(l,m). The results of this section are rather gene
and formal. The determination of the Lagrange multiplierā
in Eq. ~3.11! of course depends on the model potentialV(M )
in a nontrivial way and on the various phases of the mod
We provide a specific example in the next section, by
study of the potentialV(M )5g2M21g4M4.

IV. PHASE TRANSITIONS

In the previous section it was shown that, in the largen
limit, the spectral density of restricted trace ensembles w
polynomial potentialV(l,gi), wheregi are the couplings,
coincides with the spectral density of the canonical ensem
with potential āV(l,gi). The scaling factorā, solution of
Eq. ~3.11!, is actually a nonlinear function of the coupling
gi . The correspondence between the two sets of parame
namelygi and āgi , is one to one only in the perturbativ
phase.

In this section we show in detail the case of the ev
quartic potential

V~M !5g2 M21g4 M4 , ~4.1!

where the nonlinear relation originates different phase d
grams. To this end, we find it useful to consider thesquared
trace ensemblePl(M ),
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Pl~M !5
1

Zl
exp@2 l „22nA2 Tr V~M !1@Tr V~M !#2

…#,

~4.2!

Zl5E DM exp@2 l „22nA2 Tr V~M !1@Tr V~M !#2
…#.

The large-n limit of the model described by the probabilit
distributionPl(M ) is easily found by the saddle point ap
proximation. These type of models, where the exponen
the Boltzmann weight is a sum of different powers of trac
of even powers of the random matrix was analyzed in sev
matrix models in zero and one dimension@8–14#. The addi-
tional ‘‘trace-squared’’ terms were interpreted to provi
touching interactions to the dynamical triangulated surfa
defined by the matrix potential TrV(M ).

For any fixed l, the model in Eqs.~4.1! and ~4.2! is
equivalent in the large-n limit to a random matrix ensembl
with the well-studied canonical probability distribution

P~M !5
1

Zexp@2nTrV~M !#,

Z5E DM exp@2n Tr V~M !#, ~4.3!

V~M !5g28 M21g48 M4,

provided the parametersg28 andg48 are suitable functions o
the parameters of the model in Eqs.~4.1! and~4.2!. This may
be accomplished by two equations, such as the requirem
that the expectations of^Tr M2& and ^Tr M4& should be the
same for the two probability distributions.

On the other hand, for fixedn, in the large-l limit, Pl(M )
reproduces precisely the generalization of the fixed trace
semblePd(M ), as one sees from the following represen
tion of the d function d(x)5 lim l→`A( l /p)exp(2lx2). Of
course, when choosingg450, we merely reobtain the result
of the analysis by Bronk and Rosenzweig.

Let us now recall the saddle point analysis for the largen
limit of the ensemblePl(M ), Eqs.~4.1! and ~4.2!. Since it
proceeds along well-known analysis, we include, for m
generality, the cases of the random matrixM belonging to
the orthogonal, unitary, or symplectic ensembles, co
sponding to the parameterb51, 2, or 4. It is important to
notice that, unlike the familiar quartic probability distribu
tion ~4.3!, the probability distribution~4.1! and ~4.2! is well
defined for any real value of the two parametersg2 ,g4 . Let
us begin by assumingg2.0,g4.0, which corresponds to th
perturbative~or one-cut! phase; later in the section the com
plete phase diagram will be described. For any finite posi
value of the parameterl, the density of eigenvaluesr l(l) is
the solution of the singular integral equation

b2E dm
r l~m!

l2m
52l ~g2c21g4c42A2! V8~l!

52g28l 1 4g48l
3, ~4.4!

where the momentsck are defined by
f
s
al

s

nt

n-
-

e

-

e

ck[E dl lkr l~l! ~4.5!

andgk8 are the effective couplings:

gk852l ~g2c21g4c42A2!gk . ~4.6!

From the symmetry of the potential the support ofr l(l) is
expected to be one segment or two segments, in either
symmetric with respect to the origin. The solution of th
saddle-point equation~4.4! in the one segment phase read

r l~l!5
2

bp
~g281g48b

212g48l
2!Ab22l2, ~4.7!

where the endpoint of the support@2b,b# is given by the
normalization condition on the eigenvalue density

15E
2b

b

dl r l~l!52l ~g2c21g4c42A2!
b2

2b
~2g213b2g4!,

~4.8!

where we have used again thegk’s.
The momentsc2 andc4 can be obtained when requirin

self-consistency by inserting the solution, Eq.~4.7!, back
into the definitions~4.5!, which yields the linear system o
equations

c25
2

b
2l ~g2c21g4c42A2!

b4

8
~g212b2g4!,

~4.9!

c45
2

b
2l ~g2c21g4c42A2!

b6

64
~4g219b2g4!.

For a potential of higher degree we will again get a line
system of equations for the corresponding momentsck , k
51, . . . ,m, which is due to the fact that the solution of th
saddle-point equation will again depend linearly on the c
pling constantsgk8 as in Eq.~4.7!. Instead of solving the Eqs
~4.9! for c2 andc4 we can also express them entirely in term
of the couplings with the help of Eq.~4.8!

c25
b2~g212b2g4!

2~2g213b2g4!
,

~4.10!

c45
b4~4g219b2g4!

16~2g213b2g4!
.

The same trick can be used to express the eigenvalue de
equation~4.7! only in terms of thegk , which reads

r l~l!5
4

pb2~2g213b2g4!

3~g21g4b212g4l2!Ab22l2 , ~4.11!

where the endpoint of the supportb is the root of the fourth-
order equation inb2
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l „9~g4!2b8120g4g2b618@~g2!226A2g4#b4

232A2g2b2
…516b , ~4.12!

which, for vanishingg4 and positiveg2 is asymptotic tob2

;2@A21AA41b/(2l )#/g2 . By comparing Eq.~4.4! with
the analogous saddle point equation for the canonical qu
probability distribution~4.3! it is obvious that they have th
same eigenvalue density, in the large-n limit, for both phases
of the model, provided the effective coupling Eq.~4.6! are
precisely identified with those of the canonical distributio

g2852l ~g2c21g4c42A2!g25
2 b

b2~2g213b2g4!
g2 ,

g4852l ~g2c21g4c42A2!g45
2 b

b2~2g213b2g4!
g4 .

~4.13!

Of course, the last equality on the right sides of previo
equations only holds in the one cut phase. For simplicity,
us now proceed withb52. In terms ofg28 andg48 , the equa-
tion for the support~4.12! is the more familiar equation
3g48b

412g28b
22450. The phase diagram of the canonic

quartic modelP(M ), Eq. ~4.3!, is well known: if g28 is fixed
positive, the one-cut solution~4.7! and ~4.8! holds for any
real g48 such that

g48>2 1
12 ~g28!2, ~4.14!

which is a border of existence for the model. Ifg48 is fixed
positive, the one-cut solution holds for any realg28 such that

g28>22Ag48, ~4.15!

which is the line of phase transition to the symmetric two-
solution:

r l~l!5
2g48ulu

p
A~D22l2!~l22C2!, ~4.16!

with ends of support@2D , 2C #ø@ C , D # being solutions
of

g281g48~C21D2!50, g48~D22C2!254. ~4.17!

The map between$g2 ,g4% and$g28 ,g48% in this phase may be
found after the evaluation of$c2 ,c4% and the requirement o
self-consistency just as before.

It is straightforward to see that the phase transition l
~4.15! becomes, in the parameters of the model~4.1! and
~4.2!, the couple of lines

g45
l

4
~g2!2

„2A26AA423/~2l !…, g2.0, g4,0.

~4.18!

Therefore ifA423/(2l ),0 the model~4.1! and~4.2! has the
one-cut solution for every real value ofg2 ,g4 . In the other
caseA423/(2l ).0 the two-cut solution holds in the regio
tic

s
t

l

t

e

of parameters bounded by the two curves~4.18!, while the
one-cut solution holds everywhere else in the plane of r
values ofg2 ,g4 .

The image of the existence line~4.14!, in the space of
parametersg2 ,g4 is a couple of curves:

g45
l

12
~g2!2@A22AA417/~6l !#, g2.0, g4,0,

~4.19!

g45
l

12
~g2!2@A21AA417/~6l !#, g2,0, g4.0.

There are two regions of the plane of real variablesg2 ,g4 :
the first one bounded by the first line~4.19! and the positive
axis g2 , and the second one bounded by the second
~4.19! and the negative axisg2 , where the equation of the
support~4.12! of the one-cut solution has three possible v
ues. The one-cut solution~4.11! as function of the param
etersg2 ,g4 has a first-order discontinuity in these regio
due to the cubic type instability of the solution of Eq.~4.12!
with respect to the parametersg2 ,g4 . As usual, the lines of
the first-order transition are determined by comparing
evaluation of the free energy of the model, as functions
the different possible values of the endpoint of the supporb.

In the remaining part of this section, we consider the lim
l→` where we obtain the distributionPd(M ) with the po-
tential ~4.1! explicitly. We shall denotec̄k[ lim l→`ck and
b̄5 lim l→`b. Because of thed function in the distribution it
will hold

A2 5 g2c̄21g4c̄4 , ~4.20!

whereas the quantityl (g2c21g4c42A2) will stay finite, as
one can see from Eq.~4.8!. Equation~4.20! is actually Eq.
~3.11! for the quartic potential considered in this sectio
Equation ~4.4! shows that the model withPd(M ) has the
same eigenvalue density of the canonical quartic mo
~4.3!, providedg285āg2 , andg485āg4 , where

ā5 lim
l→`

2 l ~g2c21g4c42A2!

5S b̄2

4
~2g213b̄2g4! D 21

. ~4.21!

The results for the moments equations~4.10! and the density
equation ~4.11! carry over when replacing everything b
barred quantities. Equation~4.21! gives the solution to Eq.
~3.11! and shows its dependence on the coupling constan
the quartic potential equation~4.1!.

The phase diagram forl 5` is similar to the one previ-
ously described for finitel, with some simplifications. The
couple of lines~4.18! which are boundaries of the two-cu
phase become the line

g452
3

16

~g2!2

A2
, g2.0, g4,0, ~4.22!
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and the negativeg4 axis. Similarly there are two regions o
multiple solution for the one-cut support, where a first ord
discontinuity will occur. One is bounded by the positive p
of the g2 axis and the line

g452
7

144

~g2!2

A2
, g2.0, g4,0. ~4.23!

The second region is the entire regiong4.0 and g2,0.
Equation~4.20! for the endpointb̄ of the one-cut solution
turns into

05b̄2$9~g4!2b̄6120g2g4b̄4

18@~g2!226g4A2#b̄2232g2A2%. ~4.24!

The vanishing supportb̄50 actually provides the limiting
solution rd(l)5d(l) in the sectorg2,0,g4,0. In other
regions of parameter space the support is determined by
solution of the third-order equation inb̄2 above.

Let us finally extract the result for the Gaussian distrib
tionPd(M ) with potentialV(M )5g2M2 from the above for-
mula by settingg450. Equation~4.24! leads to
e

,

r
t

he

-

b̄25
4A2

g2
~4.25!

with the corresponding eigenvalue density from Eq.~4.11!,

rd~l!5
2

pb̄2
Ab̄22l2. ~4.26!

This is the well-known semi-circle spectral density and
gether with Eq.~2.7! it reproduces the old result@7# that the
spectral density of the restricted trace ensembles is equa
the large-n limit, to the spectral density of the Gaussian e
semble.
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